MEM6804 Modeling and Simulation for Logistics and Supply Chain: Theory & Analysis

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Spring 2021 (full-time)

Assignment 4

Due Date: June 2 (in class)

Instruction

- (a) You can answer in English or Chinese or both.
- (b) Show enough intermediate steps.
- (c) Write your answers **INDEPENDENTLY**.

Question 1 (20 points)

Suppose X_1, \ldots, X_n are an iid sample from $\mathcal{N}(\mu, \sigma^2)$. Find the estimators of μ and σ^2 using MLE. (Write down the rigorous derivation steps.)

Question 2 (15 points)

Suppose X_1, \ldots, X_n are an iid sample from Weibull (α, β) in shape & scale parametrization. The density function of Weibull (α, β) is $f(x) = \alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x/\beta)^{\alpha}}$, $x > 0, \alpha > 0, \beta > 0$. Suppose the parameter α is known. Find the estimator of β using MLE. (Write down the rigorous derivation steps; You will notice that if α is unknown and needs to be estimated together using MLE, then it requires some numerical method like Newton's method.)

Question 3 (10 + 15 = 25 points)

For the illustrative example on lecture note Lec5, the first considered exponential distribution is rejected. We then consider the Weibull family. The density function of Weibull(α, β) in shape & scale parametrization is $f(x) = \alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x/\beta)^{\alpha}}$, $x > 0, \alpha > 0, \beta > 0$. Suppose the parameters are estimated from the data via MLE: $\hat{\alpha} = 0.525$, $\hat{\beta} = 6.227$.

(1) Make the Q-Q plot. (*Note*: Show the necessary calculation. Use Excel or other software/language to draw the final plot.)

(2) Use K-S test to see if we would like to reject Weibull(0.525, 6.227) at level of significance $\alpha = 0.1, 0.05, 0.01$. (*Note*: You can use Excel or other software/language to compute the value of test statistic D; but implement the formula of D by yourself. The $(1 - \alpha)$ -quantile of D is $d_{n,1-\alpha} = c/\sqrt{n}$, and the value of c is given in the following table.)

n	$1 - \alpha$			
	0.900	0.950	0.975	0.990
10	0.679	0.730	0.774	0.823
20	0.698	0.755	0.800	0.854
50	0.708	0.770	0.817	0.873
∞	0.715	0.780	0.827	0.886

Question 4 (10 points)

Let $F_n(x)$ be the empirical CDF (check the formal definition in the updated Lec 5, page 13/57). If F(x) is the true underlying distribution. Prove that, for all $x \in \mathbb{R}$, $F_n(x) \xrightarrow{a.s.} F(x)$. (To understand this question, you need to note that, if you stand at time 0, then for any given x, $F_n(x)$ is a random variable.)

Question 5 (3 + 10 + 2 = 15 points)

Suppose we run a steady-state simulation, and observe discrete outputs Y_1, Y_2, \ldots, Y_n in one simulation run. Suppose the initialization bias can be ignored. We use $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ as the point estimator of the steady-state performance measure ϕ . The following is a mistake that one will easily make: Calculate $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$, and use $\bar{Y} \pm t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$ as the $1 - \alpha$ confidence interval for ϕ .

- (1) Why is that a mistake? Briefly explain why.
- (2) Suppose Y_1, Y_2, \ldots, Y_n are identically distributed and positively correlated, prove the following: $\mathbb{E}[S^2] < \operatorname{Var}(Y_1), \mathbb{E}[S^2/n] < \operatorname{Var}(\bar{Y}).$
- (3) For the situation in (2), if we use $\bar{Y} \pm t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$ as the confidence interval, what is the consequence?